152. Maximum Product Subarray
Medium (LinkedIn)
Find the contiguous subarray within an array (containing at least one number) which has the largest product.
For example, given the array [2,3,-2,4], the contiguous subarray [2,3] has the largest product = 6.
public class Solution {
// test case:
// nums is empty
public int maxProduct(int[] nums) {
if (nums == null || nums.length == 0) {
return 0;
}
int len = nums.length;
int[] maxValue = new int[len];
int[] minValue = new int[len];
maxValue[0] = minValue[0] = nums[0];
int globalMax = nums[0];
for(int i = 1; i < len; i++) {
if(nums[i] > 0) {
maxValue[i] = Math.max(nums[i], maxValue[i - 1] * nums[i]);
minValue[i] = Math.min(nums[i], minValue[i - 1] * nums[i]);
} else {
maxValue[i] = Math.max(nums[i], minValue[i - 1] * nums[i]);
minValue[i] = Math.min(nums[i], maxValue[i - 1] * nums[i]);
}
globalMax = Math.max(globalMax, maxValue[i]);
}
return globalMax;
}
}
Follow up:
reduce space complexity to O(1)
public class Solution {
// test case:
// nums is empty
public int maxProduct(int[] nums) {
if (nums == null || nums.length == 0) {
return 0;
}
int globalMax = nums[0];
int curMax = nums[0], curMin = nums[0];
int prevMax = nums[0], prevMin = nums[0];
for(int i = 1; i < nums.length; i++) {
if(nums[i] > 0) {
curMax = Math.max(nums[i], prevMax * nums[i]);
curMin = Math.min(nums[i], prevMin * nums[i]);
} else {
curMax = Math.max(nums[i], prevMin * nums[i]);
curMin = Math.min(nums[i], prevMax * nums[i]);
}
prevMax = curMax;
prevMin = curMin;
globalMax = Math.max(globalMax, curMax);
}
return globalMax;
}